首页> 外文OA文献 >Terminal multiple surface sliding guidance for planetary landing : Development, tuning and optimization via reinforcement learning
【2h】

Terminal multiple surface sliding guidance for planetary landing : Development, tuning and optimization via reinforcement learning

机译:用于行星着陆的终端多表面滑动引导:通过强化学习进行开发,调整和优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of achieving pinpoint landing accuracy in future space missions to planetary bodies such as the Moon or Mars presents many challenges, including the requirements of higher accuracy and degree of flexibility. These new challenges may require the development of a new class of guidance algorithms. In this paper, a non-linear guidance algorithm for planetary landing is proposed and analyzed. Based on Higher-Order Sliding Control (HOSC) theory, the Multiple Sliding Surface Guidance (MSSG) algorithm has been specifically designed to take advantage of the ability of the system to reach multiple sliding surfaces in a finite time. As a result, a guidance law that is both globally stable and robust against unknown, but bounded perturbations is devised. The proposed MSSG does not require any off-line trajectory generation, but the acceleration command is instead generated directly as function of the current and final (target) state. However, after initial analysis, it has been noted that the performance of MSSG critically depends on the choice in guidance gains. MSSG-guided trajectories have been compared to an open-loop fuel-efficient solution to investigate the relationship between the MSSG fuel performance and the selection of the guidance parameters. A full study has been executed to investigate and tune the parameters of MSSG utilizing reinforcement learning in order to truly optimize the performance of the MSSG algorithm in powered descent scenarios. Results show that the MSSG algorithm can indeed generate closed-loop trajectories that come very close to the optimal solution in terms of fuel usage. A full comparison of the trajectories is included, as well as a further Monte Carlo analysis examining the guidance errors of the MSSG algorithm under perturbed conditions using the optimized set of parameters.
机译:在未来对月球或火星之类的行星航天任务中实现精确着陆精度的问题提出了许多挑战,包括对更高的精度和灵活性的要求。这些新挑战可能需要开发新型的制导算法。本文提出并分析了一种用于行星着陆的非线性制导算法。基于高阶滑动控制(HOSC)理论,专门设计了多滑动表面引导(MSSG)算法,以利用系统在有限时间内到达多个滑动表面的能力。结果,设计了一种在全球范围内既稳定又健壮的,针对未知但有限的扰动的指导法则。提出的MSSG不需要任何离线轨迹生成,而是直接根据当前和最终(目标)状态生成加速命令。但是,在初步分析之后,已经注意到,MSSG的性能关键取决于指导收益的选择。已将MSSG引导的轨迹与开环省油解决方案进行了比较,以研究MSSG燃料性能与引导参数选择之间的关系。已经执行了一项完整的研究,以利用强化学习来调查和调整MSSG的参数,以便在动力下降的情况下真正优化MSSG算法的性能。结果表明,MSSG算法确实可以生成闭环轨迹,该轨迹在燃料使用方面非常接近最佳解决方案。包括轨迹的全面比较,以及进一步的蒙特卡洛分析,使用优化的参数集检查了扰动条件下MSSG算法的制导误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号